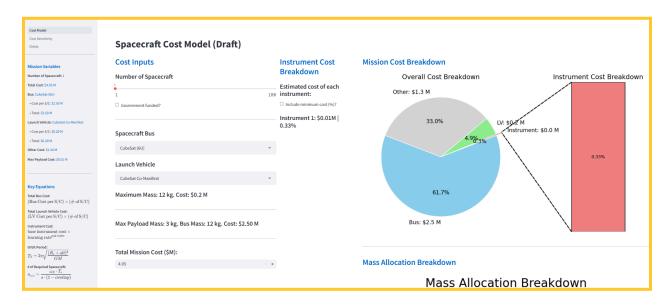
University of Southern California

Engineering Project Portfolio

Luis Diaz ladiaz@usc.edu

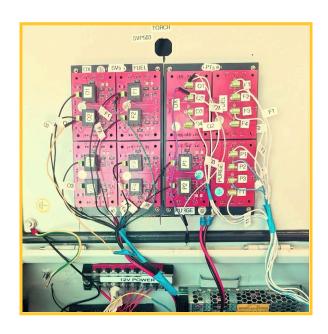


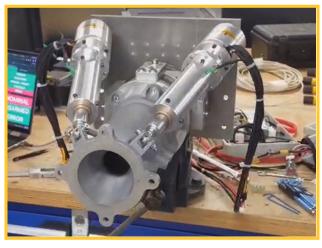
Jet Propulsion Laboratory

Earth Science Constellation Cost Model

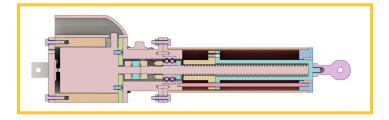
By Luis Diaz // 06.11.2025

Designed in Python, this project uses mission design implementation to derive first-order cost targets for instruments. This analyzes current and planned missions by analogy and directly compares this to the parametric value that considers bus architectures, launch vehicle costs, a learning curve for R&D of instruments, as well as other cost such as science and mission assurance to provide credible, CML 3, competitive cost targets for instrument technologists of a given Earth observation category.

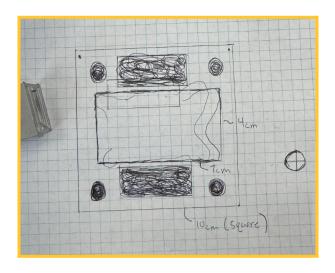

Cost Model	Payload Targe	et Cost	Sensitivity An	alysis		
Orbits	Total Fixed Project Cost (\$M):			?	Select the variable to show target payload cost sens	itivity against:
Olbits	500.00			- +	Bus	
	Enter values for the factors not selected	for plotting.				
	Bus (Type):		Launch Vehicle (Type):		Other Costs, 0-100% of total cost:	⑦ L
	CubeSat (6U) (\$0.5M)	~	CubeSat Co-Manifest (\$0.2M)	~	30	- +
						L
	Minimum Number of Spacecraft:		Payload Cost Filter Type: ③		Additional Bus Complexity Cost, 0-100% of total cost	t: ③ A
	1	- +	First Payload CostTotal Payload Cost		50	- +
	Maximum Number of Spacecraft:		Minimum Cost for First Payload (\$M):			
	5	- +	125	- +		

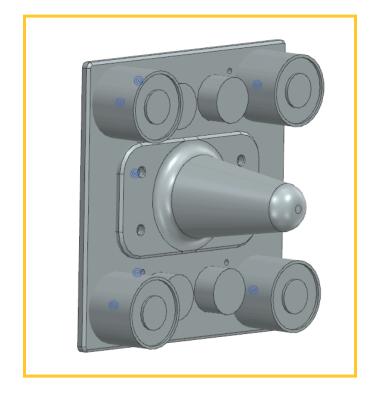


USC Liquid Propulsion Laboratory - GNC Throttling & Thrust Vector Control


By Luis Diaz // 05.20.2025

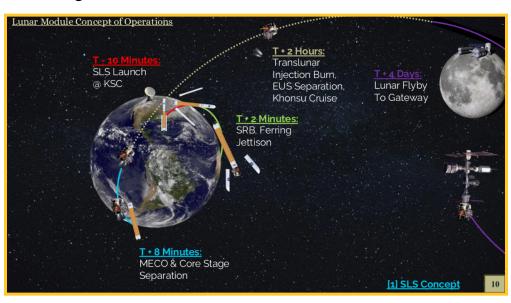
Designed and implemented real-time control systems for kerosene-LOX cryogenic propulsion, supporting throttling and thrust-vector campaigns. Developed Python GUIs and C++ frameworks to integrate sensors, actuators, and valves for hot-fire testing. Optimized system stability, repeatability, and response while collaborating across hardware and software teams in Agile cycles toward a future hopper vehicle.

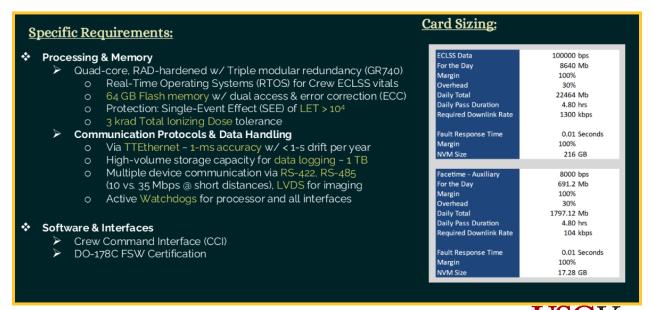



Senior Mechanical Design Electromagnetic Cubesat Dock

By Luis Diaz // 09.15.2025

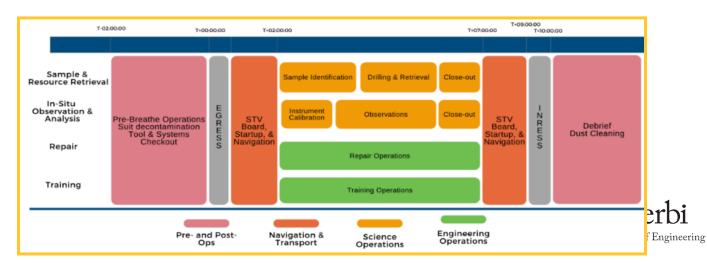
Developed a prototype electromagnetic docking system for cubesats, featuring probe-drogue capture, force/distance sensing, and pogo-pin interfaces for cross-vehicle power sharing. Integrated control electronics and embedded firmware to enable autonomous docking operations on a 2D traverse gantry. Focused on scalable, modular solutions for in-orbit servicing and collaborative small satellite architectures.




Spacecraft Systems Engineering – <u>PRESENTATION</u> Lunar Lander – Khonsu

By Luis Diaz // 05.15.2025

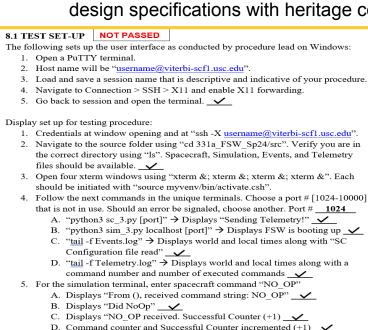
Led lunar lander design team with ECLSS, Avionics, ACS, Thermal, Structural, Power, Telecom, & Propulsion subsystem analyses. Also fulfilled C&DH as CogE and secondary costing role for mission breakdown. Led meetings and deliverable agenda.



Life Support Systems & Spaceflight – PAPER Mission to Mars

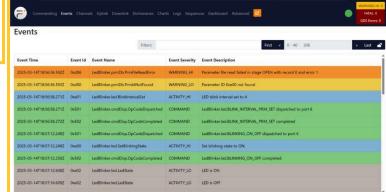
By Luis Diaz // 05.05.2025

Designed a Martian plan for environmental control & life support system feasibility. Included the design of spacesuits and displays tailored for Martian exploration. Included crew scheduling, EVA planning, and even risk mitigation.

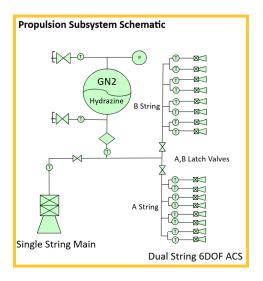


Spacecraft Subsystems – PRESENTATION

Avionics


By Luis Diaz // 05.02.2025

Used a Raspberry Pi to control electronic components like DHT20 temp/hum sensor and LED to demo validation and verification. This project creates a test procedure and executes expected behavior inside a UNIX terminal, simulating a large weather communication satellite. Includes design specifications with heritage considerations in C&DH.


Recommended Design		
Hardware	Quantity	
Ball Heritage (Ball)	2	Dual string for LEO with RW ops, two Fli
Motor Control Electronics Box	2	Dual string assuming two-axis antenna c
Data Processing Unit (DPU)	2	High resolution telescopes (cameras)
Encountion Unit	2	Encryption for catallita comme at LEO

Propulsion Models

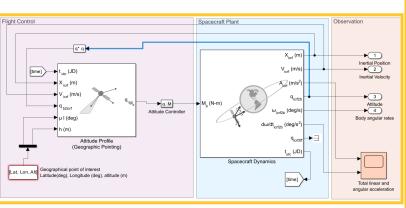
By Luis Diaz // 01.25.2025

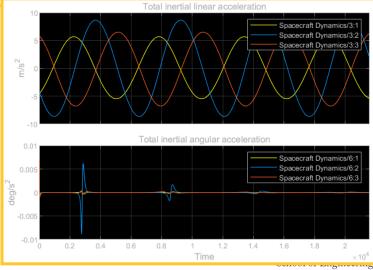
This project uses the rocket equation and specific gas constants to size thrusters and tanks for all types of propulsion modes. Used for determining the appropriate propulsion mode for different mass/delta V requirements on mission.

Name	Units	Value	Comments
Overall			
Spacecraft Dry Mass	kg	1,000	Given
Delta V (ΔV)	m/s	500	Given
Min. Thruster Pressure	bar	5	Standard
Tank Max Exp. Op. Pressure (MEOP)	bar	20	Standard
Tank Capacity Margin	%	20%	Standard
Tank Initial Op. Pressure at BOM	bar	12.8	BOM Pressure if margin is unused
Total Pressurant Mass	kg	1.4	Using Ideal Gas Equation
Total Propellant Mass	kg	175.8	Rocket Equation with 3.5% Residual Account
Oxidizer Mass	kg	111.4	NTO
Fuel Mass	kg	64.4	NMMH
Pressurant Tank Volume	liters	62.8	Using Ideal Gas Equation
Oxidizer Tank Volume	liters	94.1	Max sizing between Ox and Fu, cheaper to have same size
Fuel Tank Volume	liters	94.1	Same as Oxidizer
Rocket Equation			
Type of Propulsion System	-	Biprop	
Specific Impulse (I _{sp})	s	325	Assuming NTO-MMH
Delta V (ΔV)	m/s	500	
Spacecraft Dry Mass (m _f)	kg	1,000	
Spacecraft Wet Mass (m ₀)	kg	1,169.9	
Propellant Mass (m _p)	kg	169.9	Using Ideal Gas Equation
Bipropellant Mixture Ratio			
Propellant Type	-	NTO-MMH	
Mixture Ratio (Mox/Mfu)	-	1.73	
Residuals/Hold-up	%	3.5%	Propulsion lecture, chart 35
Total Propellant Mass (mp)	kg	175.8	Rocket Equation with 3.5% Residual Account, sum of Mox and Mfu
Oxidizer Mass	kg	111.4	
Fuel Mass	kg	64.4	

of Engineering

Name	Units	Value	Comments			
Launch Vehicle Capability	kg	4,000				
Total Delta V (ΔV)	m/s	2,220				
Total Propellant	kg	2,003				
Monoprop	kg	182				
Biprop	kg	1,821				
Dry Mass Allocation	kg	1,797				
	ΔV	Prop. Type	lsp	Initial Mass	Final Mass	Propellant Mass
Maneuver	m/s		S	kg	kg	kg
Launch Injection Correction	30	Monoprop	209	4,000	3,942	58
Deep Space Maneuver (DSM)	215	Biprop	334	3,942	3,691	250
Interplanetary TCMs	20	Monoprop	209	3,691	3,655	36
Jupiter Orbit Insertion (JOI)	1,050	Biprop	334	3,655	2,653	1,003
Clean-up Maneuvers	20	Monoprop	209	2,603	2,578	25
Jupiter System Tour TCMs	150	Biprop	334	2,578	2,462	115
Europa Orbit Insertion (EOI)	665	Biprop	334	2,462	2,010	452
Europa Altitude Change	40	Monoprop	209	1,860	1,824	36
Orbit Maintenance	30	Monoprop	209	1,824	1,797	27
Total	2,220	-	-	-	-	2,003

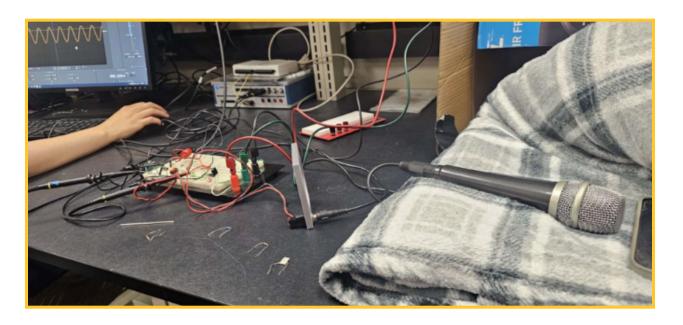

Attitude Control Systems

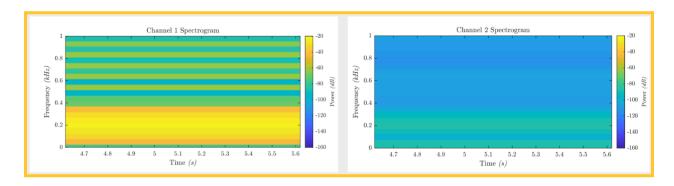

By Luis Diaz // 01.12.2025

This project uses the worst-case deep space scenarios and moments of inertia to model the appropriate propellant required for RCS maneuvers and ACS slew rates, in consideration of pointing requirements. Base hardware can be seen as dropdowns for ease of access, heritage included. ISS data verified in Simulink using a PID Controller.

ACS Thruster & Propellant Sizing			
Name	Units	Value	Comments
Common Parameters			
Standard Gravity (g ₀)	m/s ²	9.8067	Earth gravity
Environment Assumptions			
Worst-Case Disturbance (T _d)	N-m	0.00003	Gravity Gradient
Mission & Spacecraft Assumptions			
Mission Duration	years	0.8	Plan for dual redundant timeline
Spacecraft Dimensions (I, w, h)			
Length (I)	m	5.0	
Width (w)	m	5.0	
Height (h)	m	8.0	
Thruster's Moment Arm (L)	m	5.34	Thrusters are located at corners
Spacecraft Mass in final orbit	kg	9,500	Assuming MOI is out of scope
Moment of Inertia for mapping (I)	kg-m ²	53,125	Assuming cube designation, at dry mass
Spacecraft Wet Mass (mi)	kg	9,500	Launch vehicle capability not including LV adapter (LV-side)
Worst-Case Moment of Inertia (I)	kg-m ²	53,125	With Wet mass
# of Thrusters / axis	#	2	
Thruster Size (F _{actual})	N	2	
Thruster Specific Impulse (Isp)	s	215	Assume Monoprop for desaturation

Recommended Design							
Quantity	Comments						
2	Dual redundancy, internal						
16	Dual redundancy, extreme precision needed by space station						
2	Dual redundancy, external						
1	For CMG ops						
4	Dual redundancy, mega-size, precision requirements						
2	Dual reduncandy, attitude determination without stars						
2	Dual redundancy, when sun is out of scope						
1	Needed high thrust capability when spacecraft docking						
	2 16 2 1 4						





Mechoptronics Engineering – <u>PRESENTATION</u> Acoustic Analysis of RLC Bandpass Filter

By Luis Diaz // 12.20.2024

Used RLC components, characterized their response, and then analyzed unfiltered vs filtered data received via microphone apparatus and applied by a wave generator combinator. Design, test, and validation.

Telecommunications

By Luis Diaz // 12.15.2024

This project accesses the deep space network and creates a link budget compatible with all antenna sizes and the communication bands of interest.

1. Spacecraft Transmitter		Com
Bandwidth Selection	-	X-Band
Frequency	MHz	8420
Wavelength	m	3.56E-02
Transmitted RF Power (W)	W	100
Power Amplifier Efficiency	-	59%
DC Input Power (required from S/C)	W	168.9
Transmitted RF Power (dBm)	dBm	50.00
Antenna Type		Parabolic
Size (D, H, a)	m	9.00
Size (b)	m	-
Antenna Efficiency	%	0.55
Antenna Gain	dB	55.40
Circuit Loss	dB	-2.0 TBC
Pointing Loss	dB	-1.56
Pointing Error	deg	0.10
Beamwidth (3 dB)	deg	0.28
Total Effective Isotropic Radiated Power (EIRP)	dBm	101.84
2. Path Analysis		Com
Space Loss	dB	-234.48
Atmosphere Attenuation	dB	-0.334 Fron
Total Path Loss	dB	-234.81
3. DSN Receiver		Com
Antenna Selection	m	34-m
Receive/Downlink Configuration	bands	X-Band, X-only
DSN Antenna Gain	dB	68.33
Min S/C Elevation Angle (from ground station)	deg	10.0
Polarization/Ellipticity Loss	dB	-0.80
Pointing Loss	dВ	-0.10
Total Receiver Gain	dB	67.43
Total Receiver Galli	ub	07.43

Data Rate (kbps)							
S-Band		RF Power					
Antenna Size	50 W	100 W	200 W				
1-m HGA	2.8	5.7	11.4				
2-m HGA	11.3	22.7	45.4				
5-m HGA	70.4	140.8	281.6				
<i>Data Rate (kbps)</i> X-Band		RF Power					
		RF Power					
Antenna Size	50 W	100 W	200 W				
1-m HGA	35.4	70.8	141.6				
2-m HGA	139.7	279.5	559.0				
5-m HGA	795.5	1591.0	3181.9				
Data Rate (kbps)							
		Frequency Band					
Antenna Size	S-Rand	Y-Rand	K-Rand				

Power

By Luis Diaz // 11.29.2024

Models the implementation of secondary battery behavior coupled with solar arrays. RTG implementation forthcoming for the different modes like Launch, Cruise, Eclipse, and Safe-mode.

			_
1. Power Analysis Table	Units	Launch	Cruise
Mode Duration	hr	2	-
Maximum Eclipse Duration	hr	2	-
Maximum Solar Distance	AU	1	1.47
Spacecraft Power Draw - CBE	W	150.0	290.0
Bus Power	W	150.0	250.0
Payload Power	W	0	40.0
Average Contingency	%	12%	12%
Spacecraft Power Draw - MEV	W	168	325
Margin	%	22%	250%
Spacecraft Power Draw - Available/Required	W	204	1135.87
EOL Solar Array Capability	W	-	1135.88
Solar Incidence Angle	0	-	0.25
Actual EOL Solar Array Capability	W	-	1135.87
Depth of Discharge	%	70%	-
Energy for Operations - Available/Required	Wh	408	-
Battery Drain (to recharge battery)	W	-	-
Available Power (after battery recharge)	W	-	-

2. Solar Array EOL Capability	Units	Value
Solar Irradience at 1 AU	W/m ²	1370
Solar cell efficiency	%	29.5%
Packing factor	%	88%
BOL - Mismatch & fabrication loss	%	98%
BOL - Wiring losses	%	96%
EOL - Radiation (high-energy particle) loss	%	94%
EOL - UV loss	%	98.5%
EOL - Micrometeorites	%	99.5%
Solar array size	m ²	8
Solar array EOL capability at 1 AU	W	2466
Solar array assembly (average mass per m ²)	kg/m ²	0.84
Number of array panels	#	2

Mechanical

By Luis Diaz // 11.20.2024

Models the implementation of solar and planetary thermal effects on spacecraft, including surface adaptability and material selection.

Туре	%	of Mass Type	CBE Mass	Estimated Mass	
Primary Structure	5%	Internal High-Density	267.2	13.4	
Primary Structure	15%	External High-Density	46.9	7.0	
Primary Structure	20%	Distributed	60.0	12.0	
Primary Structure Total				32.4	
Secondary Structure	15%	Primary Structure	32.4	4.9	
Secondary Structure	6%	External Support Systems	46.9	2.8	
Secondary Structure	4%	Pressurant	5.0	0.2	
Secondary Structure	4%	Propellant	130.0	5.2	
Secondary Structure Total		· ·		13.1	
Type	%/#	of Mass Type	#/Total	Estimated NASS	
Table 2: Additional HW E					
IVDE				Estimated iviass	
Type Deployable Panels	1.5		#/ TOTAL	Estimated Mass -	
Deployable Panels		Surface Area (kg/m2)	- 3.0	- 3.0	
Deployable Panels Latch/Release Systems	1.5	Surface Area (kg/m2) # of Systems	-	-	
Deployable Panels Latch/Release Systems Integration Hardware	1.5 1.0	Surface Area (kg/m2) # of Systems Primary Structure	3.0	3.0	
Deployable Panels Latch/Release Systems Integration Hardware Ballast	1.5 1.0 10%	Surface Area (kg/m2) # of Systems Primary Structure Dry Mass	3.0 32.4	- 3.0 3.2	
Deployable Panels Latch/Release Systems Integration Hardware Ballast	1.5 1.0 10% 1%	Surface Area (kg/m2) # of Systems Primary Structure	3.0 32.4 755.8	- 3.0 3.2 7.6	
Deployable Panels Latch/Release Systems Integration Hardware Ballast LV Interface Adapter	1.5 1.0 10% 1% 5%	Surface Area (kg/m2) # of Systems Primary Structure Dry Mass Total Wet Mass	3.0 32.4 755.8	- 3.0 3.2 7.6	
Deployable Panels Latch/Release Systems Integration Hardware Ballast LV Interface Adapter	1.5 1.0 10% 1% 5%	Surface Area (kg/m2) # of Systems Primary Structure Dry Mass Total Wet Mass	3.0 32.4 755.8	- 3.0 3.2 7.6	
Deployable Panels Latch/Release Systems Integration Hardware Ballast LV Interface Adapter Table 3: Flight System M	1.5 1.0 10% 1% 5%	Surface Area (kg/m2) # of Systems Primary Structure Dry Mass Total Wet Mass	3.0 32.4 755.8 890.8	- 3.0 3.2 7.6 44.5	
Deployable Panels Latch/Release Systems Integration Hardware Ballast LV Interface Adapter Table 3: Flight System M	1.5 1.0 10% 1% 5%	Surface Area (kg/m2) # of Systems Primary Structure Dry Mass Total Wet Mass	3.0 32.4 755.8 890.8	- 3.0 3.2 7.6 44.5	
Deployable Panels Latch/Release Systems Integration Hardware Ballast LV Interface Adapter Table 3: Flight System M	1.5 1.0 10% 1% 5%	Surface Area (kg/m2) # of Systems Primary Structure Dry Mass Total Wet Mass mary Maximum Expected Value	3.0 32.4 755.8 890.8 Units	- 3.0 3.2 7.6 44.5 Value 604.6	
Deployable Panels Latch/Release Systems Integration Hardware Ballast LV Interface Adapter Table 3: Flight System M Spacecraft Dry Mass Total	1.5 1.0 10% 1% 5%	Surface Area (kg/m2) # of Systems Primary Structure Dry Mass Total Wet Mass mary Maximum Expected Value Margin	3.0 32.4 755.8 890.8 Units kg	- 3.0 3.2 7.6 44.5 Value 604.6 25%	
Deployable Panels Latch/Release Systems Integration Hardware Ballast LV Interface Adapter Table 3: Flight System M Spacecraft Dry Mass Total Propellant Mass	1.5 1.0 10% 1% 5%	Surface Area (kg/m2) # of Systems Primary Structure Dry Mass Total Wet Mass mary Maximum Expected Value Margin Total	- 3.0 32.4 755.8 890.8 Units kg %	- 3.0 3.2 7.6 44.5 Value 604.6 25% 755.8	

Table 1. Flight Sys	tem							Pre-existing Formula	
Subsystem	Type	Component Name	#	Unit Mass	CBE	Cont.	MEV	Notes from Database	Туре
Payload	Custom	EPIC	1	18.00	18.0	15%	20.7	Earth Polychromatic Imaging Camera	External High-Density
•		NISTAR	1	12.00	12.0	15%	13.8	NIST Advanced Radiometer	External High-Density
		Plasma-Magnetometer Suite	1	9.00	9.0	15%	10.4	Fluxgate Mag, Faraday Cup, Elec Spet	Distributed
Mechanical	Boom	Generic (5.0-m)	1	5.00	5.0	15%	5.8	Magnetometer Boom	External High-Density
	Primary Structure	Parametric Estimate	1	32.40	32.4	15%	37.3	-	Primary Structure
	Secondary Structure	Parametric Estimate	1	13.08	13.1	15%	15.0	-	-
	Deployable Panels	Parametric Estimate	1	0.00	0.0	15%	0.0	-	Deployable Panels
	Latch/Release Systems	Parametric Estimate	1	3.00	3.0	15%	3.5	-	Latch/Release Systems
	Integration Hardware	Parametric Estimate	1	3.24	3.2	15%	3.7	-	Integration Hardware
	Ballast	Parametric Estimate	1	7.56	7.6	15%	8.7	-	Ballast
	LV Interface Adapter	Parametric Estimate	1	44.54	44.5	15%	51.2	-	SV-side LV adapter
	Harness	Parametric Estimate	1	47.80	47.8	15%	55.0	10% of all other dry mass	-
Thermal	Misc. Hardware	Surfaces, Heaters, Sensors, etc.	1	25.75	25.8	15%	29.6	3% of the subsystems, excluding Mech	Distributed
Propulsion	Propellant Tank (Liquid)	NG-80296-1 (58.6 liters)	1	3.60	3.6	15%	4.1	-	Distributed
	Thruster (Monoprop)	1-N MR-103G thruster (monoprop)	10	0.33	3.3	15%	3.8	Aerojet, flight proven	Distributed
	Additional Hardware	Latch Valves	1	0.70	0.7	15%	0.8	-	Distributed
		Pressure Transducers	2	0.30	0.6	15%	0.7	-	Distributed
		Service Valves	2	0.25	0.5	15%	0.6	-	Distributed
		System Filters	1	0.90	0.9	15%	1.0	-	Distributed
		System Tubes, fittings	1	0.48	0.5	15%	0.6	5% of other propulsion dry mass	Distributed
		Mounting brackets, fasteners	1	0.48	0.5	15%	0.6	5% of other propulsion dry mass	Distributed

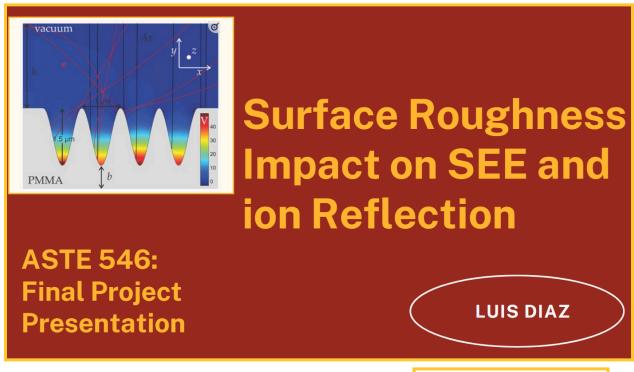
Thermal

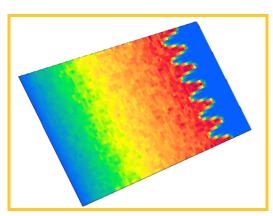
By Luis Diaz // 12.04.2024

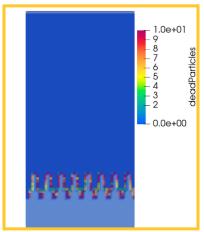
Models the implementation of solar and planetary thermal effects on spacecraft, including surface adaptability and material selection.

Inputs & Assumptions	Abbr	Units	Value	Comments	
General					
Stefan-Boltzman	σ	W/m^2 K^4	5.7E-08	from NASA Glossary	
Solar Flux	Gs	W / m^2	1370	Suited for 1 AU	
Distance from Sun	r	km	1.5E+08	Chose km for conceptualization	
Earth					
Radius	Rp	km	6370	Assumed for Earth no cloud cover	
Emissivity	€p	-	0.5	п п	
Temperature	Tp	K	300	н н	
Albedo	a	-	0.3	11 11	
Orbital Geometry					
Orbital Altitude	h	km	1500	Assumption for HW	
Angular Radius of Planet	ρ	rad	0.94	Function of Rp and r	
Reflection Factor	K	-	0.98	Function of p	
S/C Power Budget					
S/C Power	Psc	W	420	Assumption for HW	
Telecom RF Power	Prf	w	25	Assumption for HW	
Additional Heater Power	Ph	w	15	5-80 W typical range given for N2H2 freeze	
Total Dissipated S/C Power	Qd	W	410	Simplified model	
Table 3: Resulting Therma	<i>l Balan</i> Abbr	ice Units	Value	Comments	
Oin	ADDI	onics	Value	Connens	
Sun	Qs	w	89.1	Analysis in Table 2	
Earth	Qp	W	2.8	11 11	
Sun Reflected from Earth	Qrs	w	16.0	n n	
Power Dissipated within S/C	Qrad	w	33.4	11 11	
Total Head Load (in)	Qin	W	517.9	Qo may be included for systems like solar Arr	
Qout				,	
	т	K	300.00	Conversion: 26.85 °C	
Average S/C Temperature					
Average S/C Temperature Total Radiated Heat (out)	Qout	w	33.4	Qvent typically 0	

	Absorptivity	'	Comments
Surface Properties	α		
Optical Solar Reflector	0.07	0.8	8 mil Quarts Mirrors
White Paint	0.22	0.85	S13G-LO
Black Paint	0.97	0.84	3M Black Velvet
Aluminized Kapton	0.38	0.67	1 mil
Metallic	0.13	0.04	Vapor Deposited Aluminum
MLI (white beta cloth cover)	0.45	0.04	~20 internal layers that result in an ε* of 0.04
MLI (aluminized beta cloth cover)	0.37	0.04	п п
MLI (tedlar reinforced cover)	0.3	0.04	н н
MLI (teflon-backed cover)	0.1	0.04	11 11


Computational Plasma Dynamics Surface Roughness Modeling


By Luis Diaz // 05.02.2024


This project uses C++ in the Microsoft Powershell with the fundamentals of Electrostatic Particle in Cell modeling. Imaging is rendered in the Paraview software using Visual Toolkit output files. This project is set to model the surface evolution of a sample like silicon, when it is bombarded by rarefied

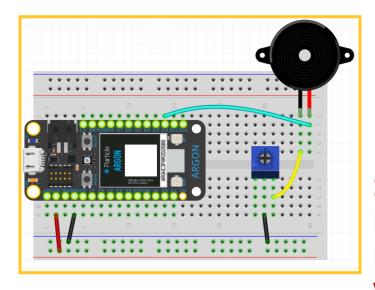
gasses under certain parameters. Click the photo below to visit my presentation.

Google x Viterbi Internship – AI Project Showcase

Tabling Activity

By Luis Diaz // 12.18.2023

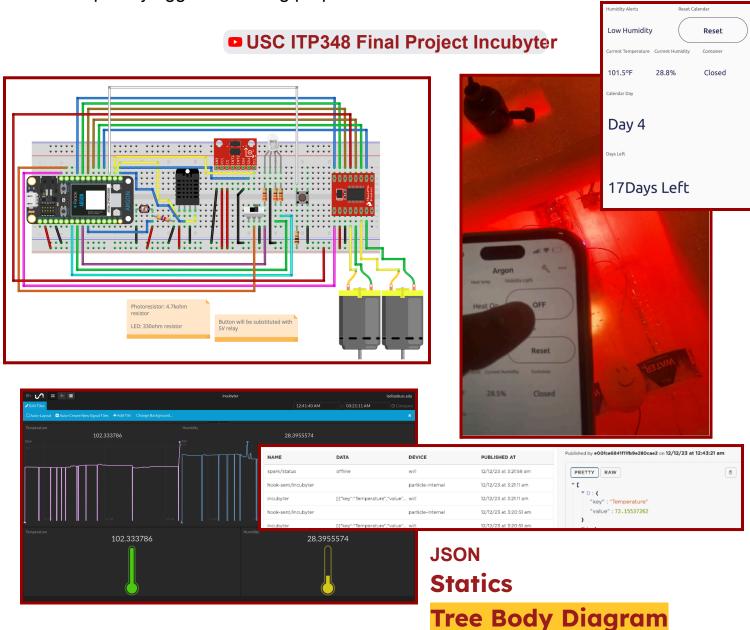
This project uses the Arduino microcontroller along with the ChatGPT natural language processing product to act as an electronic tool that can communicate human direction into frequencies that are produced by a buzzer component. We are able to see if general AI systems can learn



information and access long-term memory to produce quality code similar to human music.

Click the photo below to visit my presentation. >

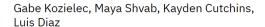
■ Al Buzzer Project


Devices: Introduction to Electronics and Wearables

By Luis Diaz // 12.12.2023

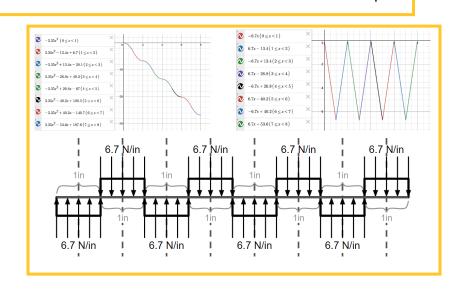
This project uses the Particle Argon microcontroller along with the Blynk bluetooth application Interface & Initial State Dashboard. It features a DHT20 temp/humidity control, DC motors, a photoresistor, an AC heat lamp, and other electrical components to power a successful incubator. The purpose of this was to create an environment that could sustain the growth of poultry eggs for farming purposes.

By Luis Diaz // 12.03.2023



This project uses the principles of Engineering statics of particles and rigid bodies, specifically trusses to develop mathematical relationships, as well as a Python code that can help one design a life-sized tree house. This was initially simulated with a craft tree-house, which could sustain point loads, distributed loads, and wind loads.

Click the photo below to visit my presentation. >



The Truth Behind the Tree-mendous Forces Elevating Tree Houses

AME 201: Statics Final Project

